| LEC # | TOPICS | LECTURE NOTES | 
|---|---|---|
| 1 | Euclidean Geometry in 3 Dimensions Geometric Proofs  | (PDF) | 
| 2 | Geometric Vectors and Vector Algebra | (PDF) | 
| 3 | Vector Algebra with Cartesian Coordinates | (PDF) | 
| 4 | Analytic Geometry in 3 Dimensions | (PDF)# | 
| 5 | Calculus of 1-Variable Vector Functions | (PDF) | 
| 6 | Calculus of Vector Functions | (PDF) | 
| 7 | Paths and Curves | (PDF) | 
| 8 | Scalar Fields Cylindrical Coordinates  | (PDF) | 
| 9 | Linear Approximation and Differentiability Gradient  | (PDF) | 
| 10 | The Chain Rule | (PDF) | 
| 11 | Elimination Method for the Chain Rule | (PDF) | 
| 12 | Maximum-Minimum Problems | (PDF) | 
| 13 | Constrained Maximum-Minimum Problems | (PDF) | 
| 14 | Multiple Integrals | (PDF) | 
| 15 | Iterated Integrals | (PDF) | 
| 16 | Integrals in Polar, Cylindrical and Spherical Coordinates | (PDF) | 
| 17 | Curvilinear Coordinates Change of Variables  | (PDF) | 
| 18 | Vector Fields | (PDF) | 
| 19 | Line Integrals | (PDF) | 
| 20 | Conservative Fields | (PDF) | 
| 21 | Line Integrals (cont.) Conservative Fields (cont.)  | (PDF) | 
| 22 | Surfaces | (PDF) | 
| 23 | Surface Integrals | (PDF) | 
| 24 | Green's Theorem | (PDF) | 
| 25 | Divergence and the Divergence Theorem | (PDF) | 
| 26 | Curl and Stokes' Theorem | (PDF) | 
| 27 | Stokes' Theorem (cont.) | (PDF) | 
| 28 | Physical Applications | (PDF) | 
| 29 | n-Vectors and Matrices | (PDF) | 
| 30 | n-Vectors and Matrices (cont.) | (PDF) | 
| 31 | Equation Systems | (PDF) | 
| 32 | Row Reduction Determinants  | (PDF) | 
| 33 | Determinants (cont.) Matrix Algebra  | (PDF) | 
| 34 | Subspaces | (PDF) | 
| 35 | Multivariable Calculus in Higher Dimensions |