Courses:

Error-Correcting Codes Laboratory >> Content Detail



Lecture Notes



Lecture Notes

SES #TOPICSLECTURE NOTES
1Signing Up

First Reading Assignment

Lecture #1
(PDF)
2Channels

Capacity and Mutual Information
(PDF)
3Analysis of Repetition Code Meta-channel

Capacity of Meta-channel

Prior, Extrinsic, Posterior and Intrinsic Probabilities
(PDF)
4Prior, Extrinsic and Posterior Probabilities, II

Normalizing Constants

Example: Symmetric Channels

Decoding Codes

Example: Parity
(PDF)
5Parity Continued
The Gaussian Distribution

The Gaussian and Erasure Channels

The Parity Product Code

BER

Heuristic Decoding of the Parity Product Code

Confidence Intervals

How big should N be?

Plotting in MATLAB®
(PDF)
6Introduction

Two Variables

Simplifying Computations

Three Variables

Trees
(PDF)
7Markov Property

Simplifying Probability Computation
(PDF)
8Vector Spaces

Duals of vector spaces

Codes and Matrices
(PDF)
9LDPC Codes

Decoding

SNR, dB
(PDF)
10In-class debugging session
11Belief Propagation on Trees

Dynamic Programming

Infnite Trees

Small Project 2
(PDF)
12Representing Probabilities, Equality Nodes

Representing Probabilities, Parity Nodes
(PDF)
13The Binary Erasure Channel

Analysis of LDPC on BEC

Making the Analysis Rigorous on Trees

Using the Polynomials

Capacity Estimation, Revisited
(PDF)
14Convolutional Codes

Trellis Representation

Decoding Convolutional Codes
(PDF)
15Remarks on Convolutional Codes

Turbo Codes

Decoding

Exit Charts
(PDF)
16Decoding Modules

Final Projects
(PDF)
17Developments in Iterative Decoding

Achieving Capacity on the BEC

Encoding

Density Evolution

Exit Charts, Revisited

Why we use bad codes to make good codes?
(PDF)

 








© 2010-2017 OpenHigherEd.com, All Rights Reserved.
Open Higher Ed ® is a registered trademark of AmeriCareers LLC.