| SES # | TOPICS | READINGS |
|---|---|---|
| L1 | Lumped abstraction relationship to physics, KVL, KCL | Chapter 1 |
| R1 | KVL, KCL resistive network analysis | Chapter 2.1-2.5, 2.4* |
| L2 | KVL, KCL example, nodal analysis | Chapter 3.1-3.3 |
| R2 | Nodal analysis, examples | Chapter 3.1-3.3 |
| L3 | Linearity, superposition, Thevenin's equivalences | Chapter 3.5-3.6 |
| R3 | Thevenin and Norton equivalences | Chapter 3.5-3.6 |
| L4 | Digital abstraction | Chapter 5.1-5.4 |
| R4 | Boolean logic, comb. gates review, examples | Chapter 5.1-5.4, 5.6-5.7 |
| R4a | Digital logic, gates, examples | Chapter 5.1-5.4, 5.6-5.7 |
| L5 | MOS switch, S and SR model, MOS gate design | Chapter 6.1-6.8 |
| R5 | MOS switch resistor (SR) model (cont.) | Chapter 6.1-6.8 |
| L6 | Nonlinear resistors, networks | Chapter 4.1-4.3 |
| R6 | Static power in dig ckts, nonlinear resistors, examples | Chapter 4.1-4.3 |
| L7 | Nonlinear resistors, small signal analysis | Chapter 4.5 |
| R7 | Nonlinear resistors, small signal examples | Chapter 4.5 |
| L8 | Dependent sources, analog amplification | Chapters 2.6, 7.1-7.2 |
| R8 | Dependent sources, amplifiers, operating point analysis, biasing | Chapters 2.6, 7.1-7.2 |
| L9 | MOS SCS model and MOS amplifier | Chapter 7.3-7.5 |
| R9 | Review MOS SCS model, MOS ckts, MOS amplifier | Chapter 7.3-7.5 |
| Q1 | Quiz 1 (evening) | |
| R9a | MOS amplifier review | Chapter 7.5 |
| L10 | Amplifier large signal analysis | Chapter 7.6-7.7 |
| R10 | Review 3-term device representations, amplifier input-output curves | Chapter 7.6-7.7 |
| L11 | Amplifier small signal analysis | Chapter 8.1-8.2 |
| R11 | Amplifier small signal analysis examples | Chapter 8.1-8.2 |
| L12 | Amplifier small signal circuit models | Chapter 8.2.1-8.2.4 |
| R12 | Amplifier small signal circuit models and analysis examples | Chapter 8.2.1-8.2.4 |
| L13 | Capacitors, first order circuits, examples | Chapters 9.1, 10.1 |
| R13 | Inductors and their physics, first order step response, examples | Chapter 10.2 |
| L14 | Intuitive analysis of first order systems, examples | Chapter 10.3*, 10.4 |
| R14 | Ramp, step, impulse, superposition | Chapters 9.4.2-9.4.3, 10.6 |
| L15 | Digital memory, state | Chapter 10.5.3, 10.6.3-10.6.4* |
| R15 | Impulse response examples, digital memory arrays | Chapter 10.5.3, 10.6.3-10.6.4* |
| L16 | Transients in second order systems | Chapter 12.1 |
| R16 | First order examples Second order examples | Chapter 12.1 |
| R17 | Second order examples Second order systems with damping | Chapter 12.2, 12.5, 12.7* |
| L17 | Second order systems with damping, intuitive analysis | Chapter 12.2, 12.5, 12.7* |
| R18 | Damped second order system examples Preview of frequency response | Chapter 12.2, 12.5, 12.7* |
| L18 | Sinusoidal steady state analysis, frequency response | Chapter 13.1-13.2 |
| Q2 | Quiz 2 (evening) | |
| L19 | Impedance methods | Chapter 13.3-13.4.2, 13.4.2* |
| R19 | Review of impedance methods and examples | Chapter 13.3-13.4.2* |
| L20 | Filters, Q factor, radio tuner | Chapter 13.5, 14.5 |
| R20 | Time and frequency domain responses, Q | Chapter 13.6 |
| L21 | Op-amp abstraction, concept of feedback, noninverting amplifier | Chapter 15.1-15.4 |
| R21 | Op-amp abstraction, examples and review, inverting amplifier | Chapter 15.1-15.4 |
| L22 | Multiple inputs and superposition, integrators, differentiators | Chapter 15.5-15.6.2 |
| R22 | First and second order op-amp filters | Chapter 15.6.3-15.6.5 |
| L23 | Op-amp abstraction, feedback, stability, oscillators, clocking | Chapter 15.7-15.8 |
| R23 | Special op-amp circuits | Chapter 15.5-15.8 |
| L24 | Energy and power | Chapter 11.1-11.3 |
| R24 | Examples, CMOS, energy and power | Chapter 11.5 |
| L25 | Breaking the abstraction barrier |
Help support MIT OpenCourseWare by shopping at Amazon.com! MIT OpenCourseWare offers direct links to Amazon.com to purchase the books cited in this course. Click on the Amazon logo to the left of any citation and purchase the book from Amazon.com, and MIT OpenCourseWare will receive up to 10% of all purchases you make. Your support will enable MIT to continue offering open access to MIT courses.